

Andreas Dankl Jutta Isopp (Hrsg.)

Berichte aus Praxis und Forschung

Ressourcenoptimierter
Anlagenbetrieb &
Künstliche Intelligenz

INHALTSVERZEICHNIS

Editoriai	
RESSOURCENOPTIMIERTER ANLAGENBETRIEB.	
Dankl: Warum Technik-Organisationen von Öko-Effizienz und Digitalisierung profitieren?	
Brumby: Der Maintenance Carbon Handprint	
Brychta: Dekarbonisierung der Wärmeversorgung am Standort Fraham	19
AUS DER PRAXIS. ANWENDUNGSBEISPIELE.	
Kumpenza, Rauter: Etablierung einer wettbewerbsfähigen Auftragsplanung	
und -steuerung in der Fahrzeugtechnik	
Isopp, Marschall: Chemie-Spezialitäten sicher überwacht	
Obertüfer: AMIS-Reise zu Weltklasse	
Angerer: Vom Bild zur Identifikation: Visuelle Erkennung von Zugkomponenten	
Göckel, Gatica: Smarte Instandhaltungslösungen mit Machine Learning	
Morys: Professionelles Ersatzteilmanagement am Beispiel des Batterieherstellers CATL	
Fink: Mindesthaltbarkeitsdatum von Sicherheitsbauteilen bringt Betreiber in Bedrängnis	44
DIGITALISIERUNG. KÜNSTLICHE INTELLIGENZ.	
Felix: Blackbox adé: KI für unterschiedliche Anwendergruppen	49
Lin: Fehlerwiederholung eliminieren dank Text-KI (LLM) für Instandhaltungsdokumentation	52
Lebelhuber: Cloud Lösungen & KI in der modernen Instandhaltung	56
Güntner: Instandhaltung 4.0: versprochen – gehalten?!	59
Streicher: Auf dem Weg zum zirkulären Geschäftsmodell: Hürden & Hindernisse	68
Knoflach, Hudelist, Ullrich: Voraussetzungen für die Datenanalyse	71
Höper: All together now – Datenräume und ihre Bedeutung für die Instandhaltung	
Güntner: Digitale Kommunikation in Produktionsnetzwerken	77
Lutzmayr, Pauritsch: Energieautarke, drahtlose Datenübertragung	
für die Sensor-Nachrüstung in Brownfield-Anlagen	
Schranz: Bienen, Ameisen und viele mehr	
Schinko: Projekt Divider: Minimalinvasive Anlagenanalyse	
Gernerth: "Papier ist uns zu langsam"	96

DER MENSCH IM MITTELPUNKT DER INSTANDHALTUNG.

Zenk: Marketing in Maintenance	99
Michels: Wie finde ich geeignete Bewerber für meinen Betrieb?	103
Aldrian: Die Notwendigkeit von New Work in der Technik	
Menhart: WAKE UP! Die Arbeitswelt der Zukunft gestalten	109
Branz: Industrie 5.0	
Hinterleitner, Silvestru: Ethisch-rechtliche Rahmenbedingungen	
für innovative Software-Architekturen	116
AUS DER PRAXIS. SOFTWARE. SCHMIERUNG. MASCHINENSCHUTZ.	
Kontschieder, Eutin: Field Service Management bei Miba	119
Faulhaber: Die Bausteine erfolgreicher Instandhaltung:	
Digitalisierung, Mobility, Automatisierung und Kl	122
Frey: Closed Loop Maintenance mit SAP APM und SAP EAM	125
Mitterer: Nachhaltiger Maschinenbetrieb mit Hilfe von Schmierstoff-Analysen	128
Kastner: Industriereinigung-Einsatz flüssiger Reinigungsmittel – Erfahrungen	133
Dengg: Die Bedeutung klar definierter Eigenschaften für Maschinenschutzgläser	139
ÜBERBLICK AKTUELLE FORSCHUNGSPROJEKTE	141
SERVICE – SEITEN	
Veranstalter der INSTANDHALTUNGSTAGE 2024	144
Aussteller und Partner der INSTANDHALTUNGSTAGE 2024	146

#MEHRWERT:

RESSOURCENOPTIMIERTER **ANLAGENBETRIEB**

Die Herausforderungen bleiben vielfältig: Fachkräftemangel, technologischer Wandel, hohe Kosten durch Zinsen und Inflation sowie regulatorische Anforderungen wie die Taxonomie-Verordnung und der Digitalisierungshype. Diese beeinflussen direkt die Instandhaltung und das Asset Management. Nur mit modernen Strukturen, Prozessen, Methoden und IT-Tools können Unternehmen die wettbewerbsbestimmende Forderung eines ressourcenoptimierten Anlagenbetriebes erfüllen und ihre Wettbewerbsfähigkeit erhalten oder ausbauen.

Die INSTANDHALTUNGSTAGE und das vorliegende Jahrbuch bieten Einblicke in moderne Entwicklungskonzepte und praxisbewährte Lösungen erfolgreicher Unternehmen bzw. Technik-Organisationen. Nehmen Sie teil am Erfahrungsaustausch mit anderen Spezialisten, holen Sie sich Ideen und Anregungen, wählen Sie kritisch die für Ihr Unternehmen geeigneten Optimierungsansätze und navigieren Sie Ihre Instandhaltung und Ihr Asset Management erfolgreich in die Zukunft.

Viel Spaß beim Lesen!

#Herz, was willst du mehr?

DIPL.-ING. DR. ANDREAS DANKL

ING. DIPL.-ING. JUTTA ISOPP

FIELD SERVICE MANAGEMENT BEI MIBA

BERNHARD KONTSCHIEDER | MIBA LEONARD EUTIN | EVORA IT SOLUTIONS

1. EFFIZIENTER EINSATZ VON UNTERNEHMENSRESSOURCEN

Um Effizienz- und Kostensparziele zu erreichen, müssen Unternehmen wie Miba ihre Prozesse entlang der Lieferkette (Digital Supply Chain) digitalisieren. Überall, wo Services – für interne wie externe Kunden – erbracht werden, kommt es neben verbesserter Kommunikation auf die effiziente Steuerung von Ressourcen an. Dies ist möglich mit einer Field Service Management Lösung für die Planung, Steuerung und Durchführung von Außeneinsätzen von Technikern.

2. WARUM SICH DIE MIBA FÜR FIELD SERVICE MANAGEMENT ENTSCHIEDEN HAT

UNTERNEHMEN

Die Miba entwickelt und produziert funktionskritische Komponenten für Anwendungen entlang der gesamten Energie-Wertschöpfungskette. An weltweit 29 Produktionsstandorten werden mit über 7.000 Mitarbeitenden Komponenten für Fahrzeuge, Schiffe, Flugzeuge, Bau- und Landmaschinen, Windkraftanlagen oder Stromnetze gefertigt.

HERAUSFORDERUNG

Welcher Instandhalter kennt die Themen Personalplanung, Datenaufzeichnung und Meldungs-/ Auftragsabschluss "on Time" nicht? Für die Steuerung der Instandhaltungs-Aufträge setzt Miba SAP EAM (Enterprise Asset Management) Software ein. Und wie bei ganz vielen anderen Unternehmen auch, kommen zusätzliche Anwendungen wie Excel, Teams oder OneNote um einen Einsatz oder eine Auftragsplanung im Austausch mit der Produktion zu gewährleisten.

Immer Montag morgens wurden in der Vergangenheit vom Teamleiter alle vorhandenen Aufträge aufwändig ausgedruckt und dann einzeln an die Techniker verteilt. Wie man sich vorstellen kann, war die Datenaufzeichnung und die Rückgabequote der Auftragspapiere alles andere als optimal.

Generell gestaltet sich die Datenaufzeichnung mit einem nicht mobilen System sehr zeitaufwändig und die Datenstruktur im Sharepoint muss immer wieder gepflegt werden.

Mit diesen Problemstellungen hat man sich auf die Suche nach der besten Lösung für die Firma Miba gemacht. Dabei wurde intensiv die Eignung der Field Service Management Anwendung von SAP als mobile Instandhaltungslösung mit Planungsfokus geprüft.

LÖSUNG

Bereits auf den ersten Blick hat die SAP Field Service Management Lösung alle Anforderungen abgedeckt:

- Plantafel
- Mobile Lösung für Techniker im Außeneinsatz
- Genaue Datenaufzeichnung mit intelligenten Checklisten
- Individuelle Einstellungen für jeden Standort möglich
- · Informationsfluss ist immer am aktuellsten Stand
- Auftragspapiere müssen nicht mehr gedruckt werden
- Bessere Kommunikation zwischen Instandhaltung und Produktion mit dem Self-Service-Portal

UMSETZUNG

Nun ging es daran, die täglichen Abläufe auf die neue Lösung umzustellen. Mit den Kollegen der Instandhaltung in Laakirchen wurden in gemeinsamen Workshops zwei verschiedene Workflows definiert: Reparatur/ge-

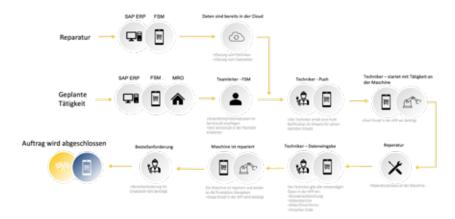


Abb. 01: FSM Workflows bei MIBA

plante Reparaturen sowie Wartungen/Projekte, die mit der neuen Anwendung durchgeführt werden sollten. (Abb. 01)

Für den Reparatur-Workflow wurden gemeinsam mit dem Implementierungspartner Evora IT Solutions die Funktionalitäten der Plantafel so erweitert, dass die Operationen der entsprechenden Aufträge direkt freigegeben werden (Rückmelde-Smartform). Anschließend kann sich jeder Techniker, der aktuell im Störungsdienst tätig ist, die Aktivität am mobilen Gerät selbst zuweisen. Falls ein weiterer Techniker benötigt wird, kann eine Nachfolgeaktivität erstellt werden und direkt dem benötigten Kollegen zugewiesen werden. So wird der Workflow ohne 24/7 Teamleiter-Verfügbarkeit sichergestellt.

Der Arbeitsablauf für geplante Wartungen und Projekte wird von den Teamleitern geplant und koordiniert. Bei diesem Workflow wird die Standard-Checkliste verwendet, die Techniker können zusätzliche Smartforms für die Datenaufzeichnung in den weiteren Arbeitsschritten anhängen.

NUTZEN

Zurzeit werden beide Möglichkeiten, die das Tool anbietet, genutzt. Das Meldewesen für die Kollegen in der Produktion hat sich natürlich stark verändert. Mit dem Self-Service-Portal ist der Workflow vereinfacht und die Anforderungen an Schichteinsteller und Teamleiter reduziert. In der zweiten Variante wird ein Service-Call mit Hilfe eines QR-Codes und geführter Benutzerführung erstellt, wobei Fehleingaben durch Pflichtfelder quasi ausgeschlossen sind. Mit diesen beiden Optionen hat sich die Datenqualität der Meldungen gesteigert und die Kommunikation zwischen Instandhaltung und Produktion erheblich verbessert.

"SAP Field Service Management sorgt dafür, dass unsere Techniker alles auf einen Blick sehen und Einsatzberichte unterwegs auf ihren mobilen Geräten erstellen können. Dies spart viel Zeit und Aufwand, erhöht es die Instandhaltungs-Datenqualität für den Maschinenpark und steigert die Produktivität insgesamt." Bernhard Kontschieder, MIBA

AUSBLICK

Die nächsten Projekte rund um das Thema Field Service Management sind bereits eingeplant, wie z.B. den bestehenden MTTR-Report (mean time to repair = durchschnittliche Reparaturzeit) mit exakteren Daten aus FSM zu optimieren. Es stehen ja nicht mehr nur Produktionsdaten, sondern automatisch generierte zeitliche Aufzeichnungen im mobilen Workflow, und damit viel bessere Daten zur Verfügung.

3. FIELD SERVICE **MANAGEMENT IN DER INSTANDHALTUNG?**

Field Service Management Anwendungen helfen dabei Abläufe rationalisieren und die Kundenzufriedenheit in einer zunehmend digitalisierten Welt zu verbessern. Sie können auch einen Beitrag dazu leisten die Prozesse in der Instandhaltung zu optimieren, auch wenn der "Kunde" die eigene Produktion ist wie bei Miba.

DIGITALISIERUNG VON PROZESSEN

Einer der wichtigsten Vorteile liegt in der Fähigkeit, eine Vielzahl an Prozessen einfach zu digitalisieren. Durch die Nutzung fortschrittlicher Technologien wie mobile Apps, Cloud Computing, künstliche Intelligenz (KI) und IoT-Geräte (Internet der Dinge) ermöglichen diese Anwendungen Unternehmen traditionelle manuelle Prozesse in rationalisierte, automatisierte Arbeitsabläufe umzuwandeln.

KONFIGURATION STATT ANWENDUNGSENTWICKLUNG

Eine Besonderheit von SAP FSM ist die einfache Individualisierung, indem Einstellungen und Konfigurationen entsprechend den spezifischen Anforderungen vorgenommen werden. Diese Flexibilität stellt sicher, dass sich die Anwendung nahtlos in die Prozesse und Arbeitsabläufe des Unternehmens einfügt, ohne dass umfangreiche Anpassungsmaßnahmen erforderlich sind. Folglich können Unternehmen die Anwendung schnell einsetzen und an sich ändernde Anforderungen anpassen.

FAZIT

Durch den Einsatz moderner Technologien in Service und Instandhaltung treiben innovative Unternehmen wie Miba Initiativen zur digitalen Transformation voran, sorgen für zufriedenere Anwender und sichern sich einen Wettbewerbsvorteil in den dynamischen Märkten von heute.

BERNHARD KONTSCHIEDER

Projektleiter, Miba AG

Bernhard Kontschieder ist seit über 20 Jahren in der Miba tätig, zuletzt in der IT-Abteilung als Product Owner EHS, Quality and Maintenance. Als SAP EAM Consultant mit Schwerpunkt FSM leitete er das Projekt zur Einführung der Field Service Management Lösung. Er verfügt über langjährige Erfahrung in der Instandhaltung, von der Lehre zum Elektrobetriebstechniker über den Facharbeiter bis hin zum SAP Keyuser und Verantwortlichen für das Ersatzteilmanagement.

LEONARD EUTIN

Consultant, Evora IT Solutions GmbH

Leonard Eutin ist Consultant bei Evora IT Solutions mit den Schwerpunkten Field Service Management und Mobile Instandhaltung. Zuvor war er bei SAP als Field Service Consultant tätig und verfügt über einen starken Hintergrund in der Softwareentwicklung.

